40 research outputs found

    Contribution of zonal harmonics to gravitational moment

    Get PDF
    A celestial body produces a gravitational moment about the mass center of a small orbiting body, which affects the orientation of the smaller body. Each zonal harmonic in the gravitational potential of a celestial body is shown to make a contribution to the gravitational moment which can be expressed in a recursive vector-dyadic form. A formal derivation is presented, followed by an example in which the result is employed in obtaining the contribution of the zonal harmonic of 2nd degree. The contribution of the zonal harmonic of 3rd degree is also reported

    An Argument Against Augmenting the Lagrangean for Nonholonomic Systems

    Get PDF
    Although it is known that correct dynamical equations of motion for a nonholonomic system cannot be obtained from a Lagrangean that has been augmented with a sum of the nonholonomic constraint equations weighted with multipliers, previous publications suggest otherwise. An example has been proposed in support of augmentation and purportedly demonstrates that an accepted method fails to produce correct equations of motion whereas augmentation leads to correct equations; this paper shows that in fact the opposite is true. The correct equations, previously discounted on the basis of a flawed application of the Newton-Euler method, are verified by using Kane's method and a new approach to determining the directions of constraint forces. A correct application of the Newton-Euler method reproduces valid equations

    Co-Spin With Symmetry Axis Stabilization, and De-Spin for Asteroid Capture

    Get PDF
    Consideration is given to attitude control associated with capturing a free-flying asteroid using an axisymmetric spacecraft. Asymptotically stable controllers are designed to align the spacecraft axis of symmetry with a line of descent that is fixed in the asteroid, and to eliminate all relative angular velocity before capture takes place. An analytical expression is presented for the torque required to maintain alignment of the axes of symmetry of the spacecraft and an axisymmetric asteroid. After the asteroid is securely captured, the angular velocity of the rigid composite body relative to an inertial frame is arrested; we present a controller that is asymptotically stable and stays within specified thrust limits

    Keeping a Spacecraft on the Sun-Earth Line

    Get PDF
    Measurements of Earth's atmosphere as it occults sunlight can be obtained advantageously from a spacecraft placed in the proximity of the Sun-Earth Lagrange point L2. Maintaining the condition of continuous solar occultation by all parts of the atmospheric disk requires that the displacement of the spacecraft perpendicular to the Sun-Earth line remains less than 200 km. However, the gravitational force exerted by the Earth s moon must be negated by propulsion in order to meet this rather tight constraint. We provide an estimate of propulsive force needed to keep the spacecraft coincident with L2, as well as estimates of velocity increments needed to maintain various trajectories in the close vicinity of L2

    Analysis of Opportunities for Intercalibration Between Two Spacecraft

    Get PDF
    There is currently a strong interest in obtaining highly accurate measurements of solar radiation reflected by Earth. For example, the Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS) satellite mission has been under consideration in Europe for several years, and planning is now under way for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) spacecraft in the United States. Such spacecraft will provide measurements whose high accuracy is traceable to SI standards; these measurements will be useful as a reference for calibrating similar instruments on board other spacecraft. Hence, analysis of opportunities for intercalibration between two spacecraft plays an important role in the planning of future missions. In order for intercalibration to take place, the measurements obtained from two spacecraft must have similar viewing geometry and be taken within a few minutes of one another. Viewing geometry is characterized in terms of viewing zenith angle, solar zenith angle, and relative azimuth angle. Opportunities for intercalibration are greater in number and longer in duration if the sensor with high accuracy can be aimed at points on the surface of the Earth other than the nadir or sub-satellite point. Analysis of intercalibration over long periods is rendered tractable by making several simplifying assumptions regarding orbital motions of the two spacecraft about Earth, as well as Earth s orbit about the Sun. The shape of the Earth is also considered. A geometric construction called a tent is introduced to facilitate analysis. It is helpful to think of an intercalibration opportunity as the passage of one spacecraft through a tent that has a fixed shape and moves with the spacecraft whose measurements are to be calibrated. Selection of points on Earth s surface as targets for measurement is discussed, as is aiming the boresight of a steerable instrument. Analysis results for a pair of spacecraft in typical low Earth orbits are provided

    Forces Associated with Nonlinear Nonholonomic Constraint Equations

    Get PDF
    A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications

    Modal Analysis of a Two-Parachute System

    Get PDF
    The Orion capsule is designed to land under a nominal configuration of three main parachutes; however, the system is required to be fault tolerant and land successfully if one of the main parachutes fails to open. The Capsule Parachute Assembly System (CPAS) Team performed a series of drop tests in order to characterize the performance of the system with two main parachutes. During the series of drop tests, several distinct dynamical modes were observed. The most consequential of these is the pendulum mode. Three other modes are benign: flyout (scissors), maypole, and breathing. The actual multi-body system is nonlinear, flexible, and possesses significant cross-coupling. Rather than perform analysis of this highly complex system directly, we conduct analysis of each dynamical mode observed during flight, based on first principles. This approach is analogous to traditional aircraft flight dynamics analysis in which the full nonlinear behavior of the airframe is decomposed into longitudinal dynamics (phugoid and short-period modes) and lateral dynamics (spiral, roll-subsidence, and dutch-roll modes). This analysis is intended to supplement multi-body nonlinear simulations in order to provide further insight into the system

    Dynamics and Control of a Tethered Enhanced Gravity Tractor Performing Asteroid Deflection

    Get PDF
    The dynamics and control of an Enhanced Gravity Tractor (EGT) augmented with a tether for deflecting an asteroid are studied. A conventional EGT consists of collected asteroidal mass collocated with the spacecraft. Because of the presence of a tether, the collected mass is placed where the EGT would have been without a tether, and the spacecraft is placed farther away from the asteroid. Doing so improves the fuel efficiency and safety margin of the EGT operation without significantly sacrificing the gravitational attraction between the asteroid and the EGT. The tether is modeled as a series of particles connected by spring-dashpot systems. Physical properties of the tether are selected to be similar to those of the SPECTRA-1000, Kevlar-29, and Kevlar-49 fibers. It is assumed that control is applied only to the spacecraft, and there is no active control associated with the collected mass. A Proportional-Derivative (PD) controller is employed to maintain the spacecraft and the collected mass at desired positions relative to the asteroid. Numerical simulations of tethered EGT operations at 2008 EV5, Itokawa, Apophis, and a fictitious ellipsoidal asteroid are performed. It is demonstrated that a PD controller is capable of accomplishing the control objectives. The gravity gradient and the control force keep the tether stretched throughout a normal tethered EGT operation, and the load on the tether is well within the design limit of the tether material. While including multiple particles in the tether model is essential in capturing details of tether vibration, the number of particles does not significantly affect the motions of the collected mass and the spacecraft. In addition, the distance from the asteroid mass center to the collected mass should be chosen judiciously in the case of a rotating slender asteroid; some distance ranges should be avoided as excessive lateral oscillations can be excited by resonance between the asteroid rotation and tether pendular motion

    Linear Analysis of a Two-Parachute System Undergoing Pendulum Motion

    Get PDF
    Motion resembling that of a pendulum undergoing large-amplitude oscillation was ob- served during a series of flight tests of an unoccupied Orion Capsule Parachute Assembly System (CPAS) drop-test vehicle. Large excursions away from vertical by the capsule could cause it to strike the ground or ocean at a large angle with respect to vertical, with an undesirable attitude with respect to heading, or with a large horizontal or vertical speed. These conditions are to be avoided because they would endanger the occupants of the capsule in an actual mission. Pendulum motion is intimately related to a parachutes aerodynamic normal force coefficient, which is a nonlinear function of angle of attack. An analytical investigation of the dynamics of pendulum motion is undertaken with the aid of a simplified model of the physical system and the assumption that the normal force coefficient is a linear function of angle of attack in the neighborhood of a value corresponding to stable equilibrium. The analysis leads to a simple relationship for the location of a pivot point, which provides insights that are consistent with previous studies

    Computational Control Workstation: Users' perspectives

    Get PDF
    A Workstation has been designed and constructed for rapidly simulating motions of rigid and elastic multibody systems. We examine the Workstation from the point of view of analysts who use the machine in an industrial setting. Two aspects of the device distinguish it from other simulation programs. First, one uses a series of windows and menus on a computer terminal, together with a keyboard and mouse, to provide a mathematical and geometrical description of the system under consideration. The second hallmark is a facility for animating simulation results. An assessment of the amount of effort required to numerically describe a system to the Workstation is made by comparing the process to that used with other multibody software. The apparatus for displaying results as a motion picture is critiqued as well. In an effort to establish confidence in the algorithms that derive, encode, and solve equations of motion, simulation results from the Workstation are compared to answers obtained with other multibody programs. Our study includes measurements of computational speed
    corecore